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ABSTRACT 

Wavelet transforms are used in number of important signal 
and image processing tasks including image coding. The 
choice of the filter bank is very important and is directly 
linked to the efficiency of the compression. An objective 
criterion to guide the choice of the wavelet filters is pro- 
posed. It is composed of two indexes. The first one is a 
frequency index computed from the aliasing of the filters. 
The second is a spatial index computed from the spread of 
the coefficients in spatial domain. The quality of a filter 
is a trade-off between frequency and spatial quality. From 
these indexes a filter set can be represented by a point in a 
plan. The abscissa is given by the frequency index and the 
ordinate by the spatial index. The criteria is computed for 
various filters that are represented in the defined plan. This 
gives a tool for comparing wavelet filters. In a second time 
the coding performances of the filters are estimated. The de- 
noising performances are also estimated. The results shows 
that the hvo proposed indexes allow a good estimation ofthe 
coding and denoising performances of the wavelet filters. 

1. INTRODUCTION 

Fast Wavelet Transforms (FWT) are used in a number of im- 
portant signal and image processing tasks including image 
coding and signal denoising. An image is decomposed into 
a pyramid of embedded approximation and detail images. 
At each scale the approximation image contains the approx- 
imation and the detail images at the next scale. Image cod- 
ing is performed by allocating bandwidth according to the 
information contained in these approximation and detail im- 
ages. This allocation is then followed by a quantization[ I]. 

The choice of the filter bank is very important and is di- 
rectly linked to the compression performances. It is still an 
open problem to choose a filter set for FWT image coding. 
Some criteria have been proposed such as regularity[l2], 
size of the support of the waveIet and number of vanishing 
moments. The size of the wavelet support increases with 
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the number of vanishing moments. The wavelet regularity is 
important to reduce the artifacts. The choice of an optimal 
wavelet is thus the result of a trade-off between the nnm- 
ber ofvanishing moments and artifacts[lO, chapter XI]. But 
there is only a partial correlation between filter regularity 
and reconstructed image quality. Villasenor has proposed a 
framework to compare filters [ 151. The comparison is based 
on computations from impulse response, sidelobe strength 
and shift-variance minimization. Their two criteria based on 
the impulse response and step response need heavy compu- 
tations. Furthermore no correlation between these criteria 
and the compression quality is given. The aim of this paper 
is to propose a unique simple criteria that allows the final 
compression quality estimation. 

The interest of the wavelet transform analysis is the deal 
between frequency and spatial analysis. When a FWT is 
used to compute the coefficients, the performances of the 
transform are the performances of the filter bank. A "good" 
filter set must be efficient both in the frequency and in the 
spatial domains. In the spatial domain, the quality of a filter 
set can be estimated from the support of the coefficients of 
the impulse response of the filter bank. In the frequency 
domain, the quality of the filter set can be estimated from 
the aliasing of the filter bank. Two indexes can thus been 
deduced from these considerations. 

Section 2 presents the definition of the spatial and fre- 
quency indexes. Section 3 details the data used to estimate 
compression and denoising quality. Section 4 links the in- 
dexes to the data. A formula is given to estimate the cod- 
ing quality from the spatial and frequency indexes. Another 
formula is givne to estimate the denoising quality from the 
same these indexes. The proposed works are preliminary 
and some improvements, tests and questions remains. They 
are presented in the conclusion. 
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2. METHODOLOGY 

In a FWT, the coefficients of the approximation and detail 
images at each scale are down-sampled. This algorithm is 
thus not shift-invariant. This phenomena is due to the alias- 
ing introduced by the down-sampling[l4,4]. Several works 
have presented translation-invariant representations[l 1, 9, 
131. These representations are constructed by a recombina- 
tion of the decimated coefficients. At each scale, the odd 
and even coefficients are combined. Others methods are 
based on the choice of scaling functions that produce less 
sensible analyses[3]. As FWT tasks are not based on these 
representations, it is important to use classical FWT associ- 
ated with almost-shift-invariant filter sets. It has previously 
been emphasized that reducing the aliasing amounts to the 
same to reduce the shift-variance of the analysis[ 10, chapter 
Xr][lS]. An index based on the aliasing estimation is thus 
a good idea. The other proposed index is based on the sup- 
port of filter bank impulse response. These two indexes are 
easily computed from the filter bank-. 

2.1. Frequency and spatial indexes 

The aliasing of a filter bank is due to the overlapping of the 
frequency responses of the low-pass and the high-pass fil- 
ters. Measuring this overlapping is equivalent to measuring 
the frequency quality of the FWT. We propose the following 
formula to compute the frequency index : 

(1) 

The spatial quality of a filter bank can be assessed from 
the size of the significant support of the equivalent filter. 
This equivalent filter takes into account the impulse responses 
of the low-pass and the high-pass filters. The spatial index 
is inspired by the variancy formula. The vanancy measures 
data dispersion. The expression of the spatial index is thus : 

where denotes the convolution operator. 
It must be noted that these indexes can be computed 

even for orthogonal and hiorthogonal filter banks with the 
same equations. 

2.2. Indexes interpretation 

The two defined indexes were computed for B-spline or- 
thogonal wavelet filters [S, 21 and for orthogonal compactly 
supported Daubechies filters [6]. The motivation of signal 
processing with wavelets is due to the spatio-frequential de- 
composition. A “good“ analysis present a trade-off between 

Figure 1: Spatial index with respect to frequency index. The 
indexes are computed for orthogonal B-spline and orthogo- 
nal Daubechies wavelet filters. The axes are in logarith- 
mic scale. These curves show that some filters have a better 
spatio-frequential trade-off than others as they are closer to 
the origin. 

spatial and frequency analysis. It is thus a good idea to rep- 
resent a filter bank by a point in the plan defined by the 
two indexes. Figure 1 shows that when the spatial index 
increases, the frequency index decreases. This behavior is 
consistent with the Heisenberg-Gaboruncertainty relation[ IO, 
chapter IV]. Two observations can be made : 
1. The filters of family form an ordered and monoton set in 
the plan defined by the two indexes. 
2. The more closer to the origin a filter is, the better is 
the trade-off between spatial and frequency analysis. This 
shows that it a-priori exists “better” filters than others and 
the measure of a distance with respect to the origin of the 
plan will allow the assessment of that quality. 

2.3. What is a “good” filter ? 

We have shown that some filter set show a better trade-off 
between frequency analysis and spatial analysis than others. 
But how is this trade-off linked to the properties ofthe filters 
? One of the main question when one want’s to use wavelets 
is : which wavelet will give the best results ? Wavelet trans- 
forms are used in a large number of important signal and 
image processing tasks. Among these tasks, signal denois- 
ing and image coding are very important (e.g. wavelets are 
used in PEG2000 coding). It is easy to compare two cod- 
ing of the same image by computing their Peak Signal to 
Noise Ratio (PSNR). We have thus decided for this paper to 
choose as “good” filters the filters that provides high PSNR 
in image coding and signal denoising. 
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Figure 2: Compression quality of studied filter banks. The 
mean PSNR is plotted with respect to the spatial and fre- 
quency indexes. 

3. DATA 

Two families of filter set were studied : the orthogonal B- 
spline and the compactly supported orthogonal Daubechies. 
For each filter set the spatial index I,, the frequency index 
If and the PSNR between the original image (or signal) and 
the reconstructed image (or signal) after compression (or 
denoising) were computed. 

Forthe compression, the coding algorithm is the wavelet 
transform-based image coder for grayscale images. The 
transform coder consists of 3 basic steps : I/a fast wavelet 
transform (decimated) is performed on the image, Zithe trans- 
form coefficients are quantized (discretized) and 3hhe quan- 
tized coefficients are entropy coded. The coding software 
was taken from Geoff Davis homepage. This coder is sim- 
ple but quite effective and is enough to compare filter sets 
performances. To empirically evaluate the performance of 
each filter set and to allow comparison with the spatial and 
frequency indexes, we performed compression on images 
from the USC-SIP1 datahase[5]. A total of28 256x256 8- 
bit test images were used, with the average PSNR computed 
for a compression of 2:l. The mean PSNR (the PSNR is 
meaned for the 28 test images) is plotted with respect to Is 
and If in Fig. 3. 

For the denoising, the algorithm was the wavelet shrink- 
age algorithm[7]. The algorithm shr inks  wavelet coefficients 
with a threshold computed at each scale with the VISUshrink 
method. To empirically evaluate the performance of each 
filter set and to allow comparison with the spatial and fre- 
quency indexes, we performed denoising on synthetic sig- 
MIS. The synthetic signals and the denoising algorithm 
was taken from the WaveLab matlab package[ 161. For each 
tested filter bank, 100 noised signals were denoised. The 
mean PSNR is plotted with respect to I, and I f  in Fig. 4. 

Figure 3: Denoising quality. The mean PSNR is plotted 
with respect to the indexes. 

4. RESULTS 

Is it possible to estimate the compression PSNR without 
performing the compression by itself? In other words, is 
it possible to estimate the PSNR from I, and If. What is 
the function that fits PSNR = f(Is,If) ? For this paper 
we assume that this function has the following planar form 

f ( L ,  If) = Au + AiIf + AzIf (3) 

In order to compute the coefficients Ak we performed 
a linear regression by minimizing d(PSNR, f(Is> I,)) = 

For the compression, the obtained coefficients are Ao = 
64.95, AI = -2.90 andA2 = -1.62. Using these coef- 
ficients we can estimate the coding quality of a given set 
of filter with PSNR,,ti,.t.d(Is, I,) = 64.95 - 2.9OIf - 
1.621, where I ,  and If are computed from the filters us- 
ing eqs. ( 1 )  and (4). The next table indicates the quality 
of the estimation. The errors between. the PSNR estimation 
(obtained from our indexes) and the real value of the PSNR 
were computed. The greatest error equals 0.2 dB and the 
mean error equals 0.07dB. This shows that our proposed cri- 
terion based on the computation of two indexes is efficient 
to estimate the wavelet image coding quality. 

J P S N R ~  + f (I8, If). 

max error I 0.2101dB 
10.0677dB 

For the denoising, the same model is used. The lin- 
ear regression allow to obtain the following coefficients : 
A. = 105.07, AI = -7.39 and A2 = -3.07. Using 
these coefficients we can estimate the denoising quality of a 
given set offilter with PSNR,,ti,,t,~(Is, I f )  = 105.07- 
7.3911 - 3.061,. The next table indicates the quality of the 
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estimation. The errors between the PSNR estimation (ob- 
tained from our indexes) and the real value of the PSNR 
were computed. The greatest error equals 1.12 dB and the 
mean error equals 0.28dB. This shows that our proposed cri- 
terion based on the computation of two indexes is efficient 
to estimate the wavelet signal denoising quality. 

max error 1.12dB -1 
The positive value of A. and the negative value of AI 

and Ai? suggest that the maximum value possible for a PSNR 
in image coding is A,,. This is necessary a limitation of our 
model. This suggest that the planar hypothesis is limited. 
Intuitively I ,  = If = 0 would correspond to an infinite 
PSNR. A better form for the function f would thus be an 
exponential or logarithmic form. 

5. CONCLUSION 

We have proposed two indexes to characterize the filter bank 
of a fast wavelet transform. The first is a frequency index 
computed from the aliasing of the filters. The second is a 
spatial index computed from the spread of the coefficients 
in the spatial domain. A filter bank can be represented by 
a point in a plan defined by these two indexes. From these 
indexes it is possible to estimate the quality of an wavelet 
image coding and signal denoising. We provide a criterion 
computed from the two indexes that allow the estimation 
of the PSNR obtained from a images coding and signals 
denoising. The proposed indexes are efficients for the pre- 
sented applications but this paper only deals with a work in 
progress. Some questions and explorations are still opened 

1. The indexes needs to be normalized. 
2. The indexes formulaes needs to be connected to the the 
kernel size in the Heisenberg-Gabor formula. The form of 
the spatial index is close to the form of the spatial part of 
the kernel. This suggest that the connection is possible. 
3. The curves of Fig. 1 suggest a relation between the pro- 
gression of the spatial index and the frequency index. What 
is this relation ? This question agree with the second ques- 
tion. 
4. More filter sets must be used in order to obtain more ac- 
curate results. In particular biorthogonal filter set must be 
included in the test. This would be easy as the computation 
of the indexes is the same for orthogonal and hiorthogonal 
filters. 
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