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Frédéric Morain-Nicolier, Stéphane Lebonvallet, Étienne Baudrier, Su Ruan

Abstract— This paper presents a quantification method
which can be used to quantify the evolution of a brain tumor
with time. From two segmented volumes, a Local Distance
Volume (LDV) based on Hausdorff Distance is computed
to show the true physical local distances between them. In
the case of tracking a tumor volume during a therapeutic
treatment, local variations can thus be shown by the LDV
in particular where the tumor has regressed and where it
has growed. This information can help radiologists to adapt
the current treatment.

I. INTRODUCTION

Accuracy in image segmentation is a nettlesome prob-

lem, especially in medical image analysis, where pre-

cision in segmentation is a prerequisite for a reliable

interpretation of the results. Moreover, many current prob-

lems in the medical realm and diagnosis derive benefit

from a precise brain segmentation. Multimodality image

registration requires a good brain segmentation: indeed,

surface matching techniques need to have a precise def-

inition of the segmented volumes [4]. As a matter of

fact, any image analysis technique has to be validated

in an efficient way so as to legitimize its use in clinical

day-to-day applications. A rigorous definition of image

quality in terms of algorithm efficiency depends on the

performance of some observer on some specific task; and

the mathematical models for these observers have to be

designed in order to allow task automation. In particular

in the domain of brain tumor segmentation, important

information is the evolution of the tumor with respect

to a given treatment. Accessing the global variation of

the tumoral volume is a first step but not necessarily

sufficient. More precise information is the localization of

the tumor variations volume. The paper is organized as

follows. In the first part, we present the three-dimensional

distance volume. This volume contains local Hausdorff

distances between to references volumes. The obtained

measures are robust to small registration error and are

made of true physical distances. Thus it is possible localize

big and small variations from one volume to the next

one. The next part resumes the segmentation method used

to extract the tumor. In the last section, we present the

results of the local distance volume computed on these
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segmented volume slices. Local variations of the tumor

are highlighted, in particular where it has regressed or

progressed.

II. 3D LOCAL DISTANCE VOLUME

A. Distance Measure: the Choice of the Hausdorff Dis-

tance

Among distance measures over binary images, the

Hausdorff distance (HD) has often been used in the

content-based retrieval domain and is known to have suc-

cessful applications in object matching [5], [7] or in face

recognition [11]. Let’s have a brief review of the definition

and of some properties related to the HD. Originally meant

as a measure between two point collections, for finite sets

of points, the HD can be defined as [5]:

Definition 1 (Hausdorff distance): Given two non-

empty finite sets of points A = (a1, . . . , an) and

B = (b1, . . . , bm) of R
2, and an underlying distance d,

the HD is given by

DH(A,B) = max (h(A,B), h(B,A)) (1)

where h(A,B) = max
a∈A

(

min
b∈B

d(a, b)

)

, (2)

h(A,B) is the so-called directed Hausdorff distance.

The interest of this measure comes firstly from its

metric properties: non-negativity, identity, symmetry and

triangle inequality. Moreover, the HD is a match method-

ology without point-to-point correspondence, so it is ro-

bust to local non-rigid distortions. For a small translation,

the Hausdorff distance is small, which matches our ex-

pectation for a distance measure.

Some Modified Versions of the Hausdorff Distance:

the classical HD has good properties but it measures the

most mismatched points between A and B, and as a

consequence it is sensitive to noise [9]. Indeed considering

two volumes containing the same pattern and one point

added to the first volume, far from the pattern, then the

HD will measure the distance between the pattern and the

point. Several modifications of the HD have been proposed

to improve the classical HD [12]. However, these measures

are global and cannot account for local distances. Indeed,

the principle of HD is to be a ”max min” distance and it

means that the value of the HD between two volumes is

reached for at least one couple of points. But it doesn’t say

if the value is reached in several parts or only for one pair,
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which corresponds to different degrees of distance. These

remarks motivate us to design a local and parameter-free

HD in the next section.

B. Local HD Measure

The notion of local distance is first discussed, then

definition of a HD measure in a local window is presented.

In all this section, A and B design two non-empty finite

sets of points of R
2, and W a convex closed subset of R

2.

Producing locally a distance implies to compare the

two volumes locally. It can be done thanks to a sliding

window. The parts of both volumes viewed through this

window are compared based on a distance measure. The

sliding-window size plays an important role: it should fit

the local distance so that the distance can give a local

measure. Nevertheless, here is the general idea: if the

pixels located in the sliding window belong to coarse

features, the window should be big enough to grasp the

feature’s distances. Similarly, for fine features, a window

”bigger” than the features will include unwanted infor-

mation on distances. These requirements are important to

obtain robust local measure. In particular it is important to

be robust to registration error. Therefore, it is necessary to

adapt the size of the window to obtain precise measures.

The local HD definition: the restriction of the HD to

a window implies to modify its definition. It is indeed

not available in the case that one of the sets is empty,

which can happen in a window. Then the distance to

the window border must be introduced (see [2]). With

the new definition of the windowed HD, it is possible to

define an algorithm which makes the window fit the local

distance for each pixel (alg. 1). It consists of a sliding

three-dimensional window whose radius is locally adapted

to find the local optimal radius.

Algorithm 1 Computation of local HD

compute DH(F,G)
for x a voxel do

n := 1 {initialization of the window-size}
while HDB(x,n)(F,G) = n and n 6 HD(F,G)
do

n := n + 1 .

end while

HDloc(x) = HDB(x,n−1)(F,G) = n − 1
end for

It is possible to express the local HD with the following

formula to allow fast computations (for details, see [2]):

Definition 2 (local HD (fast version)): for x a voxel

of the images,

HDloc(x) = |B(x) − A(x)|max(d(x,A), d(x,B))
(3)

(a) (b) (c)

(d) (e) (f)

Fig. 1. Two images (a) and (b), their textured versions (d) and (e) and
their LDMaps. The values of the LDMap (f) are low because of the large
pattern pixel ratio in the textured images (d) and (e). The LdMap (c)
between images (a) and (b) is representative (quantified and localized
information) of their local differences.

The formula is faster to compute than the algorithm

based on the windowed HD, but the obtained value

interpretation comes from the local-distance window

adaptation in the algorithm.

C. The Local Distance Volume

The local HD can be computed for all the points of the

space, it results in the following definition:

Definition 3 (Local Distance Volume (LDV)): Let F

and G design two non-empty finite sets of points of R
3,

the local distance volume LDV is defined by

∀x ∈ R
3, LDV (x) =

{

HDB(x,rmax)(F,G) if R 6= ∅
0 if R = ∅.

(4)

The maximum value in the local distance map is the

Hausdorff distance between the two input sets. For each

pixel x, the formula gives a value that depends on the

distance transform of the sets A and B. Fast algorithms

have been developed for distance transformation. So the

LDV complexity with the formula is a O(m3), which is

linear in the pixel number.

Qualitative results: We present in this paragraph two

kinds of images on which the a two-dimensional version

of the LDV (named LDMap in this paragraph) is applied

to evaluate their variation (see fig. 1). The given remarks

applies equally on volumes. 1) The first images (a) and (b)

are non textured grids. (b) is a locally deformed version of

(a). The obtained information is quantified and localized.

The values of the LDMap (up to 17) reflect the local

distance between the images. Only where the grid-lines

are different (between the two images) a non-zero distance

is obtained. Morevover, the more important is the local

distance, the more different the images are (locally). 2)

For the second comparison (d) and (e), the images are

textured and the pattern pixel ratio is large. The obtained
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(a) (b) (c)

Fig. 2. Segmented MRI.

values in (f) do not reflect the similarity in this case. As

a short conclusion, the LDMap is a useful tool for non-

textured and well-defined images (or volumes). It is thus

usable for segmented slices.

III. RESULTS

A. Segmentation Method

MRI images are acquired on a 1.5T GE (General

Electric Co.) machine using an axial 3D IR (Inversion

Recuperation) T1-weighted sequence, an axial FSE (Fast

Spin Echo) T2-weighted, an axial FSE PD-weighted se-

quence and an axial FLAIR. For one examination, we

have 24 slices of the four signals with a voxel size

of 0.47 × 0.47 × 5.5 mm3. All the slices and all the

examinations are registrated using SPM software.

We use the first examination for training SVM using

RBF kernel [10]. The training set was obtained from one

slice by using mouse to choose ten pixels into the tumour

and ten outside. We perform the first segmentation of this

volume by using the SVM model obtained. So, we build

automatically about one hundred points into the tumour

and outside from all the tumoral slices. We retraining a

second SVM and use it for perform a second segmentation

for improve the first result. With this last SVM model,

we perform the segmentation of others examinations. At

each segmentation of examination, we use this 2 steps

process for improve the result. Fig 2 contains an example

of the obtained segmentation. All the nine slices of two

segmented volumes are given in figs 3 and 4.

B. Implementation Details

The computation of the LDV is done with a new mageJ

plugin [6]. With a 2GHz opteron, the comparison of the

two 512 × 512 × 9 volumes is done in 39 seconds.

C. Results

The LDV is computed between volumes 1 and 2. The

results are presented in fig 5. As the z-resolution is

slightly greather than the x−y resolutions (with a ratio of

11.7), the obtained distance depends only lightly on the

z-axis information. Only when the obtained distance is

greather than 11.7mm, the z-information has been taken

into account. Fig 6 is a three-dimensional representation

of the LDV.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Segmentation of the first volume (slices from 18 to 23, a-f)
using SVM with RBF kernel.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Segmentation of the second volume (slices from 18 to 23, a-f)
using SVM with RBF kernel.

As a true distance is used to compute the LDV, the

given scalar are true physical distance in mm. The given

distances histogram indicates there are much more low

distances than high distances. This a coherent fact as non-

zero LDV values are obtained in the intersection of the two

volumes. The intersection is locally filled with increasing

values, starting from zero up to the maximum local

distance between the volumes. The maximum distance

is 15.56mm. This represent the higher straight distance

between the two volumes.

The proposed Local Distance Volume can be used to

track more precisely the variations between two volumes.

The Hausdorff Distance in a window (eq. (3)) is defined as

the maximum of two directed distance. In the present case

the directed distances carry useful information. hW (A,B)
carry the information on voxels present in vol. 1 and not in

vol. 2. Symmetrically hW (B,A) carry the information on

voxels present in vol. 2 and not in vol. 1. So hW (A,B)
indicates where the tumor has regressed and hW (B,A)
where the tumor has progressed. This is illustrated in fig.

7 and fig. 8. The augmentation of the central occlusion is
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(a) (b) (c)

(d) (e) (f)

(j)

Fig. 5. Slices 18 to 23 (a-f) of the Local Distance Volume between
volumes 1 (fig 3) and 2 (fig 4). The distances are absolute according to
eq. (3). (j) is the distance histogram (logarithmic scale in gray) and the
colormap of images (a-f).

Fig. 6. A three-dimensional view of the LDV between volumes 1 and
2.

clearly seen (by high negative distances).

IV. CONCLUSION

A distance measure between volumes has been pre-

sented. Using local Hausdorff distances, the Local Dis-

tance Volume (LDV) is computed with adaptative size

windows. This method allows to indicates where the

volumes are similar. The LDV has been successfully

applied on segmented MRI volumes containing a tumor.

The evolution of the tumor between two acquisitions can

be quantified by the obtention of true physical distances

between volumes. Moreover, the method allow to track

where the tumor has regressed and where it has pro-

gressed.
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