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Abstract

In this paper, we present a method for binary image comparison. For binary images, intensity information is poor and shape extraction is
often difficult. Therefore binary images have to be compared without using feature extraction. Due to the fact that different scene patterns can
be present in the images, we propose a modified Hausdorff distance (HD) locally measured in an adaptive way. The resulting set of measures
is richer than a single global measure. The local HD measures result in a local-dissimilarity map (LDMap) including the dissimilarity spatial
layout. A classification of the images in function of their similarity is carried out on the LDMaps using a support vector machine. The proposed
method is tested on a medieval illustration database and compared with other methods to show its efficiency.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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0. Introduction

Image comparison is widely used in different domains: im-
age retrieval [1], image classification [2], shape matching [3],
image quality evaluation [4], registration [5]… Methods found
in literature for image comparison can be classified into two
approaches: (a) an image feature extraction (shape, curve, tex-
ture, histogram) followed by a feature comparison; (b) straight
image comparison. For the first approach, conspicuous features
must be captured in the signature of each image in order to
be as discriminating as possible in some user defined way [6].
The choice of the signature attributes is not always easy and
depends on the processed images [5,1]. In case that there are
several patterns in the images, a segmentation is often neces-
sary to compare locally the attributes. For binary images, object
shapes cannot always be precisely identified, so it is difficult
to find the features related to shapes. Moreover, the texture at-
tribute is also difficult to extract (binary images are not always
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textured), and the color attribute is poor (only black and white
colors). Thus, the second approach, a straight image compari-
son, seems adapted in the case of binary images. In our work,
the measure is windowed and the window size is adjusted
so as to measure exclusively the local dissimilarity. The ob-
tained result is composed of a set of local measures cover-
ing the image. The following state of the art gives a general
presentation of dissimilarity measures and tends to choose the
Hausdorff distance (HD). The computation of windowed mea-
sure all over the images is time consuming, nevertheless, for
the HD, the algorithm comes down to a formula based on the
distance transform (DT) of each image which accelerates the
computation.

The paper is organized as follows: firstly we present an
overview of the image retrieval in Section 1.1 and then focus
on the HD in Section 1.2. Secondly the notion of local HD is
introduced and its properties are exposed in Sections 2 and 3.
This allows us to determine automatically the size of the local
HD’s window in function of the dissimilarity, as shown in Sec-
tion 4. Then it is shown how the algorithm may be reduced to a
formula based on the DT. The map of local HD defined without
parameters is presented in Sections 4 and 5. Finally, qualitative
results and an application to image classification are presented
in Section 6 before concluding.
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1. State of the art

1.1. Image retrieval

Similarity measure is a difficult problem. The first approach
using a feature extraction can be usually found in the field
of image retrieval. Content-based image retrieval (CBIR), also
known as query by image content (QBIC) and content-based
visual information retrieval (CBVIR) is the application of com-
puter vision to the image retrieval problem, that is, the problem
of searching for digital images in large databases. “Content-
based” means that the search makes use of the contents of
the images themselves, rather than relying on human-imputed
metadata such as captions or keywords.

The ideal CBIR system from a user perspective would involve
what is referred to as semantic retrieval. This type of open-
ended task is very difficult for computers to perform. Real CBIR
systems, being developed since the early 1980s [7] generally
retrieve visual information by its content based on lower-level
features. Features, that are generally color, shape and texture,
are used to select good matches in response to the user’s query
[1]. Different implementations of CBIR make use of different
types of user queries.

• With query by example, the user searches with a query image
(supplied by the user or chosen from a random set), and the
software finds images similar to it based on various low-level
criteria [8,9].

• With query by sketch, the user draws a rough approximation
of the image they are looking for, for example with blobs of
color, and the software locates images whose layout matches
the sketch [10,11].

• Other methods include specifying the proportions of colors
desired.

Once extracted, the features are compared with the query us-
ing a similarity measure, which is designed according to the
nature of features. For shape feature, the similarity measure
can be calculated on the curvatures, the moments or shape con-
tours [3]. Feature histogram can also be used for the compari-
son [12]. Some improvements can be obtained when the spatial
relationships between the features are considered [13]. Some
authors represent the characterizations of the features in a mul-
tidimensional vector space. A distance measure is then used
to estimate their similarity. The best known distances are the
Euclidean distance, the Chamfer distance, the HD and the Ma-
halanobis distance [14]. Since the comparison is carried out
between the extracted features, the distance measures are glob-
ally calculated. The decision upon similarity can then be taken
from the measured distance.

In the case of a straight image comparison, the second
approach, image intensity or color is generally used for the
comparison. But for binary images, the intensity information
is very poor, because there are only background pixels and
foreground pixels (scene information). Therefore, binary im-
age comparison can be considered as a comparison between
a set of foreground points. In Ref. [15], several measures of

correspondence between binary images are described and com-
pared. This study shows that distance-based measures perform
better comparisons of binary images than measures based on
set memberships. The most common measures are based on
the Euclidean distance, on the 1–1 correspondence distances
and on the HD. The measures based on a 1–1 correspondence
comprise the bottleneck distance, minimum weight matching,
uniform matching and minimum deviation matching [14]. They
are used in graph theory and imply to find a correspondence be-
tween the points of the two images. In this case, it is necessary
for images to have the same number of points or to determine a
number of points to match, which is usually delicate. The HD
on which our measure is based, is a max–min distance and it
does not have this inconvenience. It is widely used, from face
recognition [16] and binary pattern matching in images [17].

In case of binary images, shape extraction is often deemed
difficult to carry out and the extraction of connected pixels
does not allow efficient shapes extraction. Local information
is therefore difficult to access to by this way. A better way to
access to local representation is to measure a local distance.
Recently Wang [4] has exploited the known characteristics of
the Human Visual System to produce a Structural Similarity
Index. This index of local measures could be seen as a measure
of local dissimilarity but it is done through a fixed size window
(8 × 8 pixels). Since the choice of the window size is fixed and
independent of the image content, the obtained results cannot
give precise comparison. In this paper, we will show the ability
of giving an adaptive measure of the local distance in the case
of straight binary image comparison.

1.2. Overview of the HD

1.2.1. The HD as a dissimilarity measure over binary images
Among dissimilarity measures over binary images, the HD

has often been used in the content-based retrieval domain and
is known to have successful applications in object matching
[18,19], in face recognition [20,21] or in learning [22]. It can be
computed quickly using Voronoi diagrams [23]. Let us have a
brief review of the definition and some properties related to the
HD. Originally meant as a measure between two point collec-
tions F and G in a metric space E (whose underlying distance
is d), it can be viewed as a dissimilarity measure between two
binary images F and G, considering F and G respectively the
black pixels of F and G. For finite sets of points, the HD can
be defined as [17]:

Definition 1 (HD). Given two non-empty finite sets of points
F = {f1, . . . , fNF

} and G = {g1, . . . , gNG
} of R2, and an un-

derlying distance d, the HD is given by

DH (F, G) = max(h(F, G), h(G, F )), (1)

where

h(F, G) = max
f ∈F

(
min
g∈G

d(f, g)

)
, (2)

h(F, G) is the so-called directed HD. For images, we use the
same notation: DH (F, G) = DH (F, G).
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The interest of this measure comes firstly from its metric
properties: non-negativity, identity, symmetry and triangle in-
equality. These properties correspond generally to our intuition
for shape resemblance.

Moreover, the HD is a match methodology without point-to-
point correspondence, so it is robust to local non-rigid distor-
tions. Another source of interest is the following property:

Proposition 2 (Translation). Let v be a vector of R2, Tv trans-
lation of vector v and F a non-empty finite set of points, then

DH (F, TvF ) = ‖v‖. (3)

It implies that for a small translation, the value of the HD
is small, which matches our expectation for a dissimilarity
measure.

1.2.2. Some modified versions of the HD
The classical HD has good properties but it measures the

most mismatched points between F and G. Indeed, considering
two images containing the same pattern and one point added
to the first image, far from the pattern, then the HD will mea-
sure the distance between the pattern and the point. As a con-
sequence it is sensitive to noise [24].

Several modifications of the HD have been proposed to
improve it. The next definitions are detailed in Ref. [16].

The directed distance of the partial HD (PHD) is defined in
[17]:

hK(F, G) = Kth
f ∈F d(f, G), (4)

where Kth
f ∈F denotes the Kth ranked value of d(f, G). Thus, the

PHD depends on a parameter p = K/NF standing for the pro-
portion of values taken into account. The PHD method yields
good results for the case of impulse noise.

The directed distance of the modified HD (MHD) is defined
in [25]:

hMHD(F, G) = 1

NF

∑
f ∈F

d(f, G). (5)

Unlike the PHD, the MHD measure does not require any pa-
rameters. The method adapts only to the case of Gaussian noise.

The directed distance of the weighted HD (WHD) is defined
in [16]:

hWHD(F, G) = 1

NF

∑
f ∈F

w(f ) · d(f, G), (6)

where
∑

f ∈F w(f )=NF . An image can be divided into differ-
ent parts, and the contribution of the different parts to the im-
age matching may vary, therefore the HD should change. The
WHD has been used in the Chinese character image matching
[26,27] and in face recognition [28].

The directed distance of the censured HD (CHD) is defined
by [24]:

hk,l(F, G) = P th
f ∈F Qth

g∈Gd(f, g), (7)

where P th denotes the Pth ranked value of Qth
g∈Gd(f, g), with

Qth
g∈G representing the Qth ranked value of the underlying dis-

tance set. Since the CHD ranks the underlying distance, the
effect of the impulse noise to the image is reduced.

The directed distance of the “doubly modified” HD (M2HD)
is defined by [20]:

hM = 1

NF

∑
f ∈F

d(f, G) (8)

with d(f, G) = max(I min
g∈N

f
G

d(f, g), (1 − I)P ), where N
f
G

is a neighborhood of the point f in the set G and I indicates if
there exists a point g ∈ N

f
G.

The directed distance of the least trimmed squared HD (LTS-
HD) is defined in [29]:

hLT S(F, G) = 1

K

K∑
i=1

d(f, G)(i), (9)

where K denotes p × NF , as in the PHD case, and d(f, G)(i)
represents the ith distance value in the sorted sequence
d(f, G)(1) �d(f, G)(2) � · · · �d(f, G)(NF ). The measure
hLT S(F, G) is minimized by remaining distance values, af-
ter large distance values are eliminated. Even if the object is
occluded or degraded by noise, this matching scheme yields
good results.

1.2.3. Discussion
It is noticeable that except for the MHD, at least one arbi-

trary parameter has to be determined. The parameter must be
chosen to make the measure as discriminating as possible and
it depends upon the type of image to be studied, and sometimes
on the characteristics of the compared images in the same ap-
plication (e.g. more or less dark or noisy images). The MHD
measure does not require any parameters. However its match-
ing performance is not as efficient as those of the PHD and the
CHD, due to the summation operator over all distances, some
of which might be computed from outliers. Moreover, these
measures are global and cannot account for local dissimilar-
ities. Indeed, the HD is a “max–min” distance which implies
that the value of the HD between two images is reached for at
least one pair of points. But it does not indicate if the value is
reached for a single pair of points or for several pairs of points.
In this last case, if they are gathered in a part of the images or
widespread all over the images, which corresponds to different
degrees of dissimilarity. These remarks motivate us to design a
local and parameter-free HD in the next section.

2. Local HD measure

In this section, the notion of local dissimilarity is first dis-
cussed, then a naive definition of a HD measure in a local win-
dow is presented. This naive measure is a simple adaptation
of the global HD measure to the local window. Nevertheless,
the HD measure is not defined if one of the two sets is empty,
which can happen in the case of a local measure. Moreover,
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during the local HD use, the window can be moved and re-
sized. Consequently, a new definition of the local HD is given
to make the measures coherent in this case. In all this section,
F and G design two non-empty finite sets of points of R2, and
W a convex closed subset of R2.

2.1. What is a local dissimilarity?

Producing locally a dissimilarity measure implies to com-
pare the two images locally. It can be done thanks to a sliding
window. The parts of both images viewed through this window
are compared based on a dissimilarity measure. The sliding-
window size plays an important rôle: it should fit the local dis-
similarity so that the distance can give a local measure. As the
dissimilarity size is a high-level notion related to semantics, it
is not desirable to give a precise definition of it in this low-level
study. Nevertheless, here is a rough idea: If the pixels located
in the sliding window belong to coarse features, the window
should be big enough to grasp feature’s dissimilarities. Simi-
larly, for fine features, a window “bigger” than the features will
include unwanted information on dissimilarities. Therefore, it
is necessary to adapt the size of the window to obtain precise
measures.

The meaning of “local” in “local dissimilarity” has also to
be clarified. We make the assumption that a local dissimilarity
must concern information involving the central pixels in the
window, i.e. pixels whose distance from the central pixel is
less than sliding step p (in our case, as p = 1, there is only the
central pixel of the window).

2.2. Naive definition

It consists in modifying the definition of the global measure
(def. 1) by introducing a subset standing for the window:

Definition 3 (HD in a window (naive)).

HDW(F, G) = max(hW (F, G), hW (G, F )), (10)

where

hW(F, G) = max
f ∈F∩W

(
min

g∈G∩W
d(f, g)

)
. (11)

This definition is naive because it supposes that the elements
of information extracted through a window remains an image.
But it is possible that one of the images may not have any
(black) point in the window. Yet, the HD is not defined on
empty sets. In the next paragraph, the definition is modified to
make it available for empty sets. Moreover, it is also designed
to be coherent when the window is moved or resized.

2.3. Improvement of the naive definition

The issue is to attribute a value to a measure between
a non-empty point set and an empty set. Indeed, this is an
unforeseen case by the global HD because the maximum
or the minimum that takes place in the definition cannot be

Fig. 1. For the naive definition, HW1 (F, G) = d1 > HW2 (F, G) = d2, which
is not intuitive.

Fig. 2. Example for naive definition improvement. Which value can be
attributed to the measure when one of the sets is empty in the window?
This value depends on the point arrangement outside of the window. The
arrangement which gives the lowest value is the one presented above.

calculated. The modification of the definition should respect
the following principles:

• The measure value shall not decrease if the window size in-
creases. More precisely, for a window V that contains the
window W, the measure value in V shall not be strictly
smaller than the measure in W.

• The different expressions obtained (in the case of one empty
set, in the case of two non-empty sets, etc.) shall be consistent
so as to have smooth transition when the window is modified.

The first item can be justified as follows: an increase of the win-
dow size brings a new piece of information on the dissimilarity,
therefore the evaluation of the dissimilarity in the window shall
not decrease (see Fig. 1). The second item gives the possibility
to have a sliding window where the different expressions of the
HD can be used successively.

Let us bring an intuitive justification of the following new
definition for the HD in a window that takes into account the
above items. The reason why the measure value decreases is the
presence of new points (not in W but in V) whose layout is not
known in advance. A simple way to respect the non-decreasness
principle is to envisage the case of the new points leading to
the smallest measure value. This configuration is as following:
there are G points all around W (see Fig. 2). Indeed, these points
are the closest ones to the window border and thus give the
smallest measure when the window increases. But considering
the distance of F points to the G points all around the window
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border comes down to consider the distance of the F points to
the W border. That is what is improved in the new definition.

2.4. Windowed HD

Definition 4 given in this section includes the distance to the
window border so the mathematical notion of frontier and on
its discrete version have to be detailed:

• The frontier Fr(W) comes from the topology defined by the
metric d. In the application (Section 6), the distance is the
one associated to the norm L∞.

• In the discrete case, we consider that the frontier is between
the pixels. For example, the frontier of the ball B(x, n) is the
line between B(x, n) and B(x, n+ 1)\B(x, n). The distance
of a point z ∈ B(x, n) to the frontier is equal to the distance
to the pixels just after the frontier. Thus, for a point z in
B(x, n) and on the side of B(x, n), its distance to the frontier
is equal to 1.

Definition 4 (Windowed HD). Let F, G be two bounded sets
of R2.

HDW(F, G) = max(hW (F, G), hW (G, F )),

where there are three cases:

(1) If F ∩ W �= ∅ and G ∩ W �= ∅,

hW(F, G) = maxf ∈F∩W [min(ming∈G∩W d(f, g),

minw∈Fr(W) d(f, w))],
(2) if F ∩ W �= ∅ and G ∩ W = ∅,

hW(F, G) = maxf ∈F∩W [minw∈Fr(W)d(f, w)],
(3) if F ∩ W = ∅, hW(F, G) = 0.

Remark 5. (a) In case there is no point of F neither of G in
W, both of the directed distances are equal to 0 and therefore
the global distance too. Which is coherent with the fact that the
two extracted parts are equal.

(b) In case there is exactly one set without point in W, one
of the two directed distances is equal to 0 and the expression
of the other one takes into account the edge distance.

The main difference with the classic HD definition is the
introduction of the term minw∈Fr(W) d(f, w) in the first and in
the second case. This term can be seen as the translation of the
fact that the measure is done in a window and not on the whole
images. Moreover in the second case, this term substitutes for
ming∈G∩W d(f, g) that is not available since G ∩ W = ∅.

3. Properties of the windowed HD

In this section, useful properties are demonstrated. The cri-
terion proposed in Section 4 is based on these properties:

• the HDW is between 0 and HD(F, G),
• it is non-decreasing when embedded growing windows W

are considered.

3.1. General properties

HDW is non-negative and symmetric by definition.

Proposition 6 (Identity). Let F, G be two bounded sets of points
of R2, and W a star-shaped closed subset of R2.

HDW(F, G) = 0 ⇐⇒ F ∩ W = G ∩ W . (12)

Proof. (⇐) Trivial. (⇒) If HDW(F, G) = 0.
Then both directed distances are equal to zero, and as the

distance to the points of Fr(W) is never equal to zero, it remains
to the property of the classical HD which is a metric. �

The following properties need the window W to be a ball.

Proposition 7 (Boundary). Let x ∈ R2 and r > 0, and let define
W = B(x, r) then HDW(F, G)�HD(F, G).

Proof. See Appendix A.1.

So when the window W slides all over the two images, the
values in the produced dissimilarity map will remain between 0
and HD(F, G). But what happens when the size of the window
W is increased? It seems intuitive that the value increases as
well. This is the object of the following proposition.

3.2. Property depending on the window-size

This property ensures that the value measured in a window
does not decrease when the window is enlarged. The informa-
tion taken into account when the window is enlarged does not
reduce the former dissimilarity-measure value.

Proposition 8 (Growth). Let V = B(xv, rv) and W =
B(xw, rw) be two close discs such as V ⊂ W then
HDV (F, G)�HDW(F, G).

Proof. See Appendix A.2.

This property is important because it traduces the fact that
the growth of the window will not reduce the measure of the
local dissimilarity.

The properties of boundary and growth give a frame to a
window-size-criterion definition. It remains now to find a crite-
rion that finds the window growth in order to measure the local
dissimilarity.

4. A parameter-free, adaptative, local HD

According to Section 2.1, the notion of local dissimilarity
needs to be precised mathematically to define the criterion for
the optimal window size. This will be treated in the next sub-
section.

In all the section, F and G design two non-empty finite sets
of points of R2. The next property specifies the conditions on
F and G to obtain the maximum value for HDW(F, G). Then,
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the notion of local HD dissimilarity is defined. This finally
enables the definition of an optimal size for a window B(x, r)

in function of F and G.

Lemma 9 (Maximum value). Let x ∈ R2 and r > 0, and let
a window B(x, r) then supF,GHDB(x,r)(F, G) is reached only
when there is exactly one F point (resp. G) at the center of
W and no G point (resp. F) except maybe on Fr(W), then
HDB(x,r)(F, G) = r .

Proof. Without loss of generality, we can focus on
hW(F, G). For points of F in W that are not at the center
of W , minw∈Fr(W) d(f, w) < r then min(ming∈G∩W(d(f, g),
minw∈Fr(W) d(f, w)) < r . For f0 at the center of W ,
min(ming∈G∩W(d(f0, g), minw∈Fr(W) d(f0, w)) = r and it is
reached for the points on Fr(W). For the other points of F
in W if there are any of them, this min(ming∈G∩W(d(f0, g),

minwinFr(W) d(f0, w)) is below r, and so the max over the
points of F is r. �

The aim here is to quantify the local dissimilarity. We as-
sume that the central pixel of the window W belongs to the
features which compose the local dissimilarity. We also want
the window to exclude other dissimilarities (i.e. related to
others features). Thus, the measure must concern:

• a central point: if it is not involved, the window can be moved
to put one of the included points at its center, and

• an edge point: if none of the edge points is involved, the
window size can be reduced.

In this case, Lemma 9 implies that the measure in the window
reaches its maximum value. Heuristically, the value measured
in the window will be maximum if the window is smaller or
equal to the ideal size (regarding the local dissimilarity size)
and it will not be maximum if the window is too large. From
which the local measure is defined as:

Definition 10 (Local measure). A window B(x, r) is said to
give a local measure when the measure of the HD in the window
B(x, r) is maximum: HDB(x,r)(F, G) = r .

It is necessary to know if there is a maximum local measure.
So, let x ∈ R2 and r > 0, let us define:

Definition 11 (Local-measure set). The local-measure set R is
given by

R = {r > 0/HDB(x,r)(F, G) = r}. (13)

When R is non-empty, it is bounded by HD(F, G) (Propo-
sition 8), so it has a upper boundary rmax . This leads to the
definition:

Definition 12 (Maximum local measure). For x ∈ R2 fixed, if
R is not empty, rmax =sup(R) is named the optimal radius and
for this radius, HDB(x,rmax) is said to give the maximum local
measure rmax .

It can be deduced from Lemma 9 that there are two
possibilities:

• If x belongs neither to F nor to G or if x belongs to F and
G, then by Lemma 9, HDW will not be maximum for any
window size: the measure will be equal to 0.

• If x belongs only to one of the two subsets F and G, for
example F. Then, as G is finite, ∃gmin ∈ G ∩ W , the closest
point to x (for the distance d). By Lemma 9, we know that
for 0�r �d(f0, gmin) = rm, W will give a local measure
and for r > rm, as minb∈G∩W(f0, g) = rm < r , HDW cannot
have its maximum value. So the measure will be

d(f0, gmin) = d(f0, G). (14)

The following formula gives the explicit expression for the
computation of the maximum local measure for both cases:

Theorem 13. Let x ∈ R2, the maximum local measure centered
on x is equal to

|1F (x) − 1G(x)| max(d(x, F ), d(x, G)),

where 1F (x) is equal to 1 when x ∈ F and to 0 elsewhere.

Proof. The value of the maximum local measure and the value
obtained from the formula are evaluated in different cases, so
to show their equality:

• If x ∈ F ∪ G or if x /∈ F and x /∈ G, the maximum local
measure is equal to 0 and as |1F (x) − 1G(x)| = 0, and thus
the formula.

• If x belongs only to one of the two subsets F and G,
for example F, from Definition 4, the local measures are
equal to the directed distances from F to G and then with
Eq. (14), the maximum local measure is equal to d(x, G).
As |1F (x) − 1G(x)| = 1, the formula is also equal to
d(x, G). �

5. Local-distance map

This section deals with the formal and practical definition of
the local-distance map (LDMap) which is based on the local
distance measure for each point. Given two images, the LDMap
is not an image dissimilarity measure. It is a map characterizing
the local differences between the two input images. A subse-
quent classification step on the LDMap is necessary to access
the similarity between the two images.

We first present a formal definition and some properties of
the LDMap in the general case. Then a short study of the DT
allows an evaluation of the complexity of the algorithm. Finally,
some quantitative results are given.

5.1. Definition

The definition of the LD Map between two sets of points as-
sociates the value of the maximum local measure to each point
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of R2. The formula obtained in Theorem 13 gives a reduced
expression.

Definition 14 (Local-distance map (LDMap)). Let F and G
be two non-empty finite sets of points of R2, the LDMap is
defined by

∀ x ∈ R2, LDMap(x) = |1F (x) − 1G(x)|
× max(d(x, F ), d(x, G)). (15)

The following corollary shows that the maximum value in
the LDMap is the HD between the two input sets.

Corollary 15 (Maximum value in the LDMap). The value v =
HD(F, G) is reached at least once in the LDMap:

max(LDMap(F, G)) = HD(F, G) = v. (16)

Proof. As F and G are finite, Definition 1 implies that
HD(F, G) is reached for two points, for example f0 and
g0: h(F, G) = d(f0, g0). Theorem 13 implies that for f0,
LDMap(f0) = d(f0, G) = d(f0, g0). �

5.2. The discrete case

The previous definition of the LDMap is specialized here for
digital images. In this case, the output is an image characterizing
the local dissimilarities between the input images. Theorem 13
shows that the LDMap’s formula depends mainly on the DT
x �→ d(x, F ). A short study of the DT is presented here so as
to evaluate the compulation complexity of the LDMap.

5.2.1. Distance transform
The DT is well known in computer vision and in pattern

recognition. It stands for the information of the distance to the
point set of a binary image.

Definition 16 (DT). Let A be a point set of R2 the DT of A is
given by

DT A(x) = d(x, A) for x ∈ R2. (17)

The DT is a step in the HD computation. Most of the studies
dedicated to it aim to improve the computation time. Here is a
short presentation.

It was introduced by Rosenfeld [30,31], then in Ref. [32], the
author gives a DT fast computation for the euclidean distance
based on masks. More recently, several methods have been
presented to give an exact and fast computation of the euclidean
DT in a linear time [33,34]. The case of the chessboard distance
has also been studied in Ref. [35], and Brown presents a fast
algorithm in the case of the Manhattan distance [36]. Finally,
in Ref. [37], the authors show a generalization of the DT to
gray-level images. We will focus on the euclidean DT whose
computation time is linear.

5.2.2. Computational complexity of the LDMap
Let us consider two m × m images. The computation of the

LDMap begins with the computation of the DTs of both of the
images. Then three simple operations (a maximum, a difference
and a product) are computed on the images. As the distance
transform has a linear computation time O(m2), the whole
computation complexity is a O(m2). The given complexity is
thus only an upper bound. The real complexity depends on the
input image contents.

5.3. Qualitative results

In order to have a better intuitive comprehension of the
proposed LDMap, some input images and their corresponding
LDMap are presented here. For all the following illustrations
of LDMaps, the darker the pixel, the higher the local distance.
The first example is the comparison of simple images with lines
(Fig. 3). The input images contain simple patterns (a vertical
line, a horizontal one and a square). Let us give some comments
about the comparison of the vertical and the horizontal lines:
for the pixel where they cross, the value is equal to zero and for
the other black pixels, the more distant from a line, the bigger
the distance in the LDMap. The value of the global HD is 11.
The comparison between the vertical line and the square re-
sults in the same global HD (=11) but the spatial layout shows
that this value is reached in numerous pixels (belonging to the
square’s vertical sides) while it is found only on four occasions
in the comparison of the two lines (at their ends).

Fig. 4 illustrates the notion of local dissimilarity. Each im-
age contains two letters. The dissimilarities are quantified: big
dissimilarities are represented in dark and small ones in light.
Moreover, they are spatially localized: from the LDMap, one
can see that the bigger dissimilarities are situated on the straight
line of the “e” and on the top of the “t”, so the corresponding
dissimilarities are important. The ones between the left part of
the “o” and the bottom of the “t” and between the loop of the
“e” and the “c” are light, so they are small.

Fig. 5 offers an elaborate way to save time during the holi-
days. Indeed the images come from a ten-error game: the sec-
ond image is a copy of the first one, but with ten differences (the
ten errors). They have been photographed from slightly differ-
ent points of view and straight comparison C = |B − A| failed
to find the ten errors. The LDMap (image D) highlights most
of the errors (we have circled the 10 errors in black to highlight
them), except the black stripe on the tracksuit (that has become
two black stripes). The reason is the anisotropy of the “error”:
it is long and not wide. The window stops its growth as soon
as it meets points of the stripes and so it is blind to the length
of the “error”.

5.4. Comparison

We present here some results regarding the advantages of
the LDMap with respect to the MHD existing in the literature.
Fig. 6 presents two simple object’s comparisons that result in
the same HD value 11. As shown in Table 1, the comparisons
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Fig. 3. Behavior of the LDMap on simple patterns. A vertical line, a horizontal one, a square and their LDMaps. The darker the pixel, the higher the distance
measure.

Fig. 4. Letters “co” et “et” and their LDMap. The obtained LDMap (c) shows clearly both locations and quantification of the dissimilarities.

Fig. 5. The ten-error game. The two images to compare (A and B), the absolute difference C = |B − A| and their LDMap (D) where we have circled the
errors in black.
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Fig. 6. LDMap from the comparison of the image (a) (vertical line) with the image (b) (shifted line (a)) and the image (c) (dotted shifted line (a)). None of the
presented global measures is precise enough to measure the different similarity degrees. On the contrary, this piece of information is contained in the LDMap.

Table 1
Results for several global HD measures of the pair A, D and A, E

Comparison method HD Partial HD MHD WHD (threshold)

A D 11 11 11 11
A E 11 11 11 11

The results show that the measures cannot account of the different degrees
of similarity between the different image pairs.

of the image A with the images C and D give the same value for
the PHD, the MHD, the WHD, although in the first case, two
plain lines are compared and in the second one, a plain line is
compared with a dashed one. The LDMap accounts clearly for
this distinction and enables a potential decision to distinguish
these two cases. A more advanced comparison based on an
application is given in Section 6.

5.5. Limitations

We present in this paragraph some kinds of images for which
a LDMap-based comparison will not give good information to
evaluate their similarity.

• Firstly, it concerns images including a large ratio of pattern
pixels, e.g. textured images. In this case, the measure values
in the DT of the images are low. As the LDMap is based on
the DT, it is also composed of low values of distance mea-
sures, so it is difficult to evaluate the image similarity on
this basis. This case is illustrated in Fig. 7. For the first com-
parison, the pattern pixel ratio is not large, and the obtained
values (up to 17) reflect the similarity between the images
(the image size is 128 × 128). For the second comparison,

the binary images are textured and the pattern pixel ration is
large. The obtained values (up to 2) do not reflect the simi-
larity in this case.

• Secondly, it involves images with a small ratio of pixel im-
ages, e.g. segmented images. The reason is that the non-zero
distance values are located on the pattern pixels of one of
the images being compared. As a result, there are few non-
zero values in the LDMap, which can make the similarity
evaluation difficult.

6. Application: CBIR

In order to show the interest of the proposed distance map
with quantitative results, it has to be included in a global classi-
fication process. The aim of this section is to present the results
of the comparison of the local-dissimilarity map (LDMap) to
other methods.

6.1. The database

The Troyes municipal library, which is our collaborator, has
provided digitalized medieval illustrations for the test database
[38]. These images, originally printed in books, have strong
contrast which allows to binarize them with little loss. This
database is composed of 68 images, some of them illustrating
the same scene. The objective is to retrieve illustrations repre-
senting the same scene.

One of the difficulties comes from the numerous classes in
the database: a class of images illustrating the same scene in-
clude between one and four images. So there are about 30
classes of similar images for the 68 images (some classes con-
tain only one image). The number of classes makes a straight
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Fig. 7. Two images (a) and (b), their textured versions (d) and (e) and their LDMaps. The values of the LDMap (f) are lower than the LDMap (c) because of
the large pattern pixel ratio in the textured images (d) and (e).

comparison on the images complicated and in addition, the
choice of the class number is difficult as far as new images can
be introduced and need the creation of a new class. Unlike the
images, the LDMaps are classified into two classes: the ones
obtained by the comparison of similar images Csim and the
other ones by the comparison of two dissimilar images Cdissim.
The introduction of new images does not change the LDMap
class number.

The comparison of the 68 images results in 2278 LDMaps,
125 of which are classified in Csim and 2153 in Cdissim

thanks to a manual expert comparison of the impressions.
Examples of medieval impressions and their LDMaps are
given Fig. 8. Impressions 1 and 2 come from very similar
wooden stamps and impression 3 illustrates the same scene
with differences in the way of illustrating the grass and the
helmets. Even when the global HD does not reflect the simi-
larity degree (HD(imp1, imp2) = 25, HD(imp1, imp3) = 15),
LDMap(imp1, imp3) is locally darker (so with higher val-
ues) than LDMap(imp1, imp2) where the illustration differs.
The impression 4 illustrates a distinct scene and high values
(comparing to those of the other LDMaps) can be found all
over LDMap(imp1, imp2).

6.2. The global classification process

It is composed of two stages: firstly the construction of a
LDMap between two images, secondly a classification using
a Support Vector Machines (SVM) based on the obtained dis-
tance map. During the acquisition, the medieval impressions
have been registered and binarized. The chosen size is 64 × 64
pixels to save computation time. Instead of a comparison of two
image signatures, the distance map allows a direct dissimilarity

comparison including spatial information on the dissimilarities.
This information is exploited in the classification step.

6.2.1. Classification
LDMaps are constructed by the comparison process. The set

of the LDMaps can be then classified in two classes: Csim class
including maps from similar images and Cdissim class including
maps from dissimilar images.

A SVM method is used to classify the LDMaps into these two
classes. We will now briefly review of the SVM. SVM method
is a classification and regression method introduced by Boser et
al. [39], for a complete description see Ref. [40]. SVMs are par-
ticularly efficient for supervised classification because they can
handle problems depending on numerous descriptors and have
been successfully applied on large dimension real problems.
For example, in pattern recognition, SVMs have been used for
writing isolated figure recognition [41], object recognition [42],
face detection in images [43] and text categorization [44].

In the frame of the LDMap comparison, a study on the dif-
ferent SVM methods has been carried out [45] and shows that
the most efficient choice to deal with our data was the classical
SVM (C-SVM) with a linear kernel.

6.3. Experiments

Our objective is to test the method’s efficiency in assessing
local dissimilarities. The experiments were carried out by the
following way: first a supervised machine learning is made on
a set of 50 LDMaps in Csim and 50 in Cdissim. Then, the test
is done on a distinct set of 75 LDMaps of Csim and 200 of
Cdissim. The choice of the sets in each class is randomized.
Secondly, Five comparison methods are carried out. Finally, the
results obtained by the five comparison methods with the five
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Fig. 8. Medieval impressions and their LDMaps. Here are four medieval impressions. Imp. 1, Imp. 2 and Imp. 3 illustrate the same scene with a different
kind of grass and helmets in Imp. 3. Imp. 4 illustrates a distinct scene.

comparison methods are compared with the ones obtained
manually. The five classification methods are the follo-
wing ones:

• our method based on the LDMap,
• the so-called Local Simple Difference Map (LSDMap) us-

ing the distance map, but with the simple difference locally
instead of the HD: HSDW(F, G) = |F ∩ W − G ∩ W |,

• the global HD,
• the PHD,
• the MHD.

6.3.1. Test methods
A quantitative result is then obtained for each comparison

method thanks to a decision step. The decision step is different

whether the measure result is an image (case of the LDMap
and the LSDMap) or a real value (case of the HD and its vari-
ations). In the first case, the classification method is a SVM
described in Section 6.2. In the second case, an empirical dis-
tribution for each class Csim and Cdissim is computed from the
learning set. As the modes of the empirical distributions are
quite well defined, an easy and efficient classification method
is the maximum likelihood method.

6.3.2. Results
Results are summarized in Table 2. They show the efficiency

of the LDMap both concerning spatial information (compari-
son with the global HD and the PHD) and the ability of the
local HD to catch the local dissimilarities (comparison with
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Table 2
Results for DH,W, the LDMap used with the absolute difference, the global HD, the Partial HD (PHD) and for Modified HD (MHD)

Successful retrieval LDMap (%) LSDMap (%) HD (%) PHD (%) MHD (%)

Found in Csim 98 90 60 83 77
Found in Cdissim 97 92 75 81 83

The PHD depends on a parameter p and the detailed results for the PHD are presented in Fig. 9.

Fig. 9. Graphs of the successful rate for the partial HD (PHD) function of the parameter p = K/N (see formula Section 1.2.1). The graphs stand for the rates
for the two classes Csim and Cdissim and for all the LDMaps (global rate).

the LSDMap). As the PHD depends on a parameter, only the
results with the optimal parameter are presented in Table 2.
The detailed results for the PHD are shown Fig. 9. This fig-
ure highlights the difficulty of the parameter choice, even with
an a priori study. Indeed, this choice has to be precise because
there is an efficiency difference up to 25% for two consecutive
steps and it is difficult because there are several local maxima.
The aim is to retrieve similar images, so Csim successful rate
is the most important and after the Cdissim rate. As Cdissim is
really bigger than Csim, the global rate is not very interesting.
Thus, the best values are for p = 0.65: 83% for Csim and 81%
for Cdissim.

6.3.3. Comments
The results both for the HD and the PHD show that dis-

similarity global information is less discriminant than a map
of local information. The comparison between the LDMap and
the LSDMap shows that the local HD is better to measure lo-
cal dissimilarity than the simple difference. This is illustrated
on Fig. 10.

6.4. Robustness

6.4.1. Noise related to medieval impressions degradation
Robustness related to the application database is evaluated:

The kind of noise related to medieval impressions can be

ink-stain noise and ink-erasing noise in order to simulate
potential degradation that could damage illustrations. The
robustness to these kinds of noise is tested in the follo-
wing way:

• The learning stage is done on LDMap from images without
noise.

• The test stage is done on LDMap from one unnoisy image
and one noisy image.

This method enables to evaluate to which extend a stained or
erased image is successfully compared to unnoisy images.

The successful retrieval rates for both classes Csim and
Cdissim have been measured for square ink stains and eras-
ings, with an increasing square size. The results are presented
Fig. 11. We can observe that the method is more robust to
stains than to erasings. One reason is that the treated informa-
tion comes from the black pixels. High values appear because
of the erased square in the LDMap and this leads the classifier
to class the LDMap as dissimilar.

6.4.2. Robustness relative to translation
In this paragraph, the robustness to small horizontal transla-

tion is evaluated. A small translation means a defect of regis-
tration between the images. This defect can occur during the
digitalization of the impressions or after the pre-processing.
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Fig. 10. Illustration of the LDMap efficiency to measure the local dissimilarity. For the measured LSDMap between (a) and (b) (see (c)), it is not logical that
the dissimilarities on the left leg are higher than those of the right leg. The LDMap measured between (a) and (b) (see (d)) is close to the visual intuition
with higher dissimilarities on the right leg than those of the left leg.
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Fig. 11. Robustness to ink stains and erasings: the result is really different whether it is a stain or an erasing. One reason is that treated information is the
one of black pixels.
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Fig. 12. Robustness to small translations. The successful retrieval rate is
constant for Cdissim and decreases slowly for Csim.

The robustness to translation is tested in the following way:

• The learning stage is done on LDMap from images without
translation.

• The test stage is done on LDMap from one image without
translation and one translated image.

This protocol allows to evaluate the extent to which a trans-
lated image is successfully compared to untranslated images.
The successful retrieval rates for both classes Csim and Cdissim

have been measured with an increasing translation. The results
are presented Fig. 12. The classification decreases slowly when
the translation increases. It is normal since all the measures in
the LDMap increase. The property 2 shows indeed that the HD
measure is proportional to the translation length. The LDMap
inherits of this property for small translations. For bigger trans-
lations, the measures in the LDMap are no more local, and the
successful retrieval rates are low. Nevertheless bigger transla-
tions do not correspond to registration errors, so it has not to
be studied here.

7. Conclusion

This paper proposes a method to make an adaptive measure
of the local dissimilarities between two binary images. With
this end, a local HD is defined and its properties of boundary
and growth are proven. This allows making the HD measure
automatically fit the local image dissimilarity. The LDMap con-
tains the local distances and their spatial layout. These infor-
mation may be exploited to compare images that are difficult to
separate with a global similarity measures because of the pres-
ence of different contents. A supervised classification based on
SVM is applied to the LDMaps to decide the similarity of the
compared images. As an application, the proposed method has
been tested on an medieval wooden stamps base. The compar-

ison with global measures shows that the dissimilarity spatial
distribution really improves the results of classification. The
comparison with the simple-difference map shows that the HD
is more efficient to catch local dissimilarities. Finally, the study
of the global-process robustness carried out to show that the
robustness to ink stains is good and the robustness to erasings
is quite good. Further works will explore the gray-level case
and study the use of the LDMap for assessment of non-linear
multiresolution properties.

Appendix A.

A.1. Proof of Proposition 7

Proof. Suppose HDW(F, G) > HD(F, G). Without loss of
generality, suppose that HDW(F, G)=hW(F, G). By hypothe-
sis hW(F, G) > 0, so from expression (4), there are two cases:

(1) (If F ∩ W �= ∅, G ∩ W �= ∅) then

hW(F, G)= max
f ∈F∩W

[
min

(
min

g∈G∩W
d(f, g), min

w∈Fr(W)
d(f, w)

)]
,

(A.1)

so

∃ f0 ∈ F ∩ W/hW(F, G) = min

(
min

g∈G∩W
d(f0, g),

min
w∈Fr(W)

d(f0, w)

)
. (A.2)

There are two cases:

(a) The minimum is reached by the first member in parenthe-
sis:

hW(F, G) = min
g∈G∩W

d(f0, g),

then

∃g0 ∈ G ∩ W/hW(F, G) = d(f0, g0). (A.3)

Yet, for the point f0, there are two pieces of information:
• the distance from this point to the edge of W is higher

than d(f0, g0), because the minimum is reached by the
first member in parenthesis.

• As W is a ball, from the previous point, one has

B(f0, d(f0, g0)) ⊂ W (A.4)

and by definition of g0, there is no other point of G in
B(f0, d(f0, g0)) than g0, so

min
g∈G

d(f0, g) = d(f0, g0),

i.e. d(f0, g0) is one of the minima, so

d(f0, g0)� max
f ∈F

(
min
g∈G

d(f, g)

)
.
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(a) Now one can deduce in this case (a) that

HDW(F, G) = d(f0, g0),

so

HDW(F, G)�HD(F, G),

which is in contradiction with the hypothesis.
(b) Let see the case the minimum in Eq. (A.1) is reached by

the second member in parenthesis:

hW(F, G) = min
w∈Fr(W)

d(f0, w),

note r0 = minw∈Fr(W) d(f0, w), then B(f0, r0) ⊂ W . Yet
the minimum (of Eq. (A.1)) is not reached by a point of
G, so G ∩ B(f0, r0) = ∅. then

r0 � min
g∈G

(f0, g),

and so

r0 � max
f ∈F

(
min
g∈G

d(f, g)

)
, (A.5)

yet, by definition

r0 = min
w∈Fr(W)

d(f0, w)

= hW(F, G)

= HDW(F, G).

Replace it in (A.5),

HDW(F, G)� max
f ∈F

(
min
g∈G

d(f, g)

)
, (A.6)

What’s more

max
f ∈F

(
min
g∈G

d(f, g)

)
= hW(F, G)

�HD(F, G).

Replace it in (A.6),

HDW(F, G)�HD(F, G),

which is contradictory with the hypothesis.
(2) (If F �= ∅, G = ∅) then, from (4),

hW(F, G) = max
f ∈F∩W

(
min

w∈Fr(W)
d(f, w)

)
,

So

∃f0 ∈ F ∩ W/hW(F, G) = min
w∈Fr(W)

d(f0, w). (A.7)

The situation is the same as in the case (b) treated above. �

A.2. Proof of Proposition 8

Proof. The difference with the previous property is the distance
to the edges in HDW . First point: V ⊂ W implies that for all
point v ∈ V ,

d(v, F r(V ))�d(v, F r(W)). (A.8)

So

hV (F, G) = max
f ∈F∩V

min

(
min

g∈G∩V
(d(a, g)), min

v∈Fr(V)
d(a, v)

)

(A.9)

� max
f ∈F∩V

min

(
min

g∈G∩V
d(f, g), min

w∈Fr(W)
d(f, v)

)
.

(A.10)

The demonstration follows the same way as the previous one:
suppose HDV (F, G) > HDW(F, G) then without loss of gen-
erality, HDV (F, G)=hV (F, G). By hypothesis hW(F, G) > 0,
so from expression (4),

∃a0 ∈ F ∩ V/hV (F, G)

=

⎧⎪⎨
⎪⎩

min
(
minb∈G∩V d(a0, b), minv∈Fr(V )d(a0, v)

)
if F ∩ V �= ∅, G ∩ V �= ∅

minv∈Fr(V )d(a0, v) if F ∩ V �= ∅, G ∩ V = ∅.

(A.11)

As in the previous proof, we treat the first case, the second one
is then deduced from it.

(1) (If F∩V �= ∅, G∩V �= ∅) two cases can be distinguished

(a) The minimum is reached by the first member in parenthe-
sis:

hV (F, G) = min
b∈G∩V

d(a0, b),

then

∃b0 ∈ G ∩ V/hV (F, G) = d(a0, b0). (A.12)

Then two points regarding point a0:
• As the minimum is reached by the first member in paren-

thesis, it is inferior to the second member, and so

min
b∈G∩V

d(a0, b)� min
v∈Fr(V )

d(a0, v),

then, with (A.12),

d(a0, b0)� min
v∈Fr(V )

d(a0, v). (A.13)

• As a consequence of this first point:

B(a0, d(a0, b0)) ⊂ V ,

∀b∈ (B(a0, d(a0, b0)) ∩ G) , d(a0, b)=d(a0, b0).

(A.14)
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(a) So

min
b∈G∩W

d(a0, b) = d(a0, b0).

Let’s prove now that

d(a0, b0)� min
w∈Fr(W)

d(a0, w).

As a0 ∈ V et V ⊂ W , one has

min
v∈Fr(V )

d(a0, v)� min
w∈Fr(W)

d(a0, w),

from Eq. (A.13), one has d(a0, b0)�minv∈Fr(V ) d(a0, v)

so

d(a0, b0)� min
w∈Fr(W)

d(a0, w). (A.15)

What is more, from Eq. (A.14), one has

∀b ∈ G ∩ B(a0, d(a0, b0)), d(a0, b) = d(a0, b0),

so

∀b ∈ G ∩ W, d(a0, b)�d(a0, b0),

i.e.,

d(a0, b0)� min
b∈B∩W

d(a0, b). (A.16)

From Eqs. (A.14) and (A.16), one has

d(a0, b0)� min

(
min

b∈G∩W
d(a0, b),

min
w∈Fr(W)

d(a0, w)

)
. (A.17)

By definition,

hW(F, G) = max
a∈F∩W

(
min

(
min

b∈G∩W
d(a, b), min

w∈Fr(W)

d(a, w)

))
,

and the maximum for all the points of F is greater than the
value for the point a0, so, with Eq. (A.17)

max
a∈F∩W

(
min

(
min

b∈G∩W
d(a, b), min

w∈Fr(W)
d(a, w)

))

�d(a0, b0),

so

hW(F, G)�d(a0, b0).

What is in contradiction with hypothesis (A.8).
(b) The minimum of Eq. (A.11) is reached by the second term

in parenthesis:

hV (F, G) = min
v∈Fr(V )

d(a0, v).

Note that r0 = minv∈Fr(V ) d(a0, v), as V is a ball by hy-
pothesis, one has

B(a0, r0) ⊂ V .

What is more, as the minimum is reached by the second
member of Eq. (A.11),

∀b ∈ G ∩ B(a0, r0), d(a0, b)�r0,

so

∀b ∈ G, d(a0, b)�r0,

then

∀b ∈ G ∩ W, d(a0, b)�r0,

and so

min
b∈G∩W

d(a0, b)�r0. (A.18)

Yet, as a0 ∈ V and V ⊂ W , then

∀v ∈ Fr(V ), ∀w ∈ Fr(W), d(a0, v)�d(a0, w)

so

r0 = min
v∈Fr(V )

d(a0, v)� min
w∈Fr(W)

d(a0, w), (A.19)

with , one has:

min

(
min

b∈G∩W
d(a0, b), min

w∈Fr(W)
d(a0, w)

)
�r0,

i.e.,

hW(F, G)�r0,

or r0 = hV (F, G) so

hW(F, G)�hV (F, G).

What is in contradiction with hypothesis (A.8).

(2) (if F ∩ V �= ∅, G ∩ V = ∅) then one has

hV (F, G) = min
v∈Fr(V )

d(a0, v), (A.20)

and it comes down to the case (b).
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